On subspaces of non-commutative Lp-spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOMOGENEOUS HILBERTIAN SUBSPACES OF NON-COMMUTATIVE Lp SPACES

December 22, 1999 Abstract. Suppose A is a hyperfinite von Neumann algebra with a normal faithful normalized trace τ . We prove that if E is a homogeneous Hilbertian subspace of Lp(τ) (1 ≤ p < ∞) such that the norms induced on E by Lp(τ) and L2(τ) are equivalent, then E is completely isomorphic to the subspace of Lp([0, 1]) spanned by Rademacher functions. Consequently, any homogeneous Hilberti...

متن کامل

Subspaces of Non-commutative Spaces

This paper concerns the closed points, closed subspaces, open subspaces, weakly closed and weakly open subspaces, and effective divisors, on a non-commutative space.

متن کامل

FINITE DIMENSIONAL SUBSPACES OF NONCOMMUTATIVE Lp Spaces

We prove the following noncommutative version of Lewis’s classical result. Every n-dimensional subspace E of Lp(M) (1 < p < ∞) for a von Neumann algebra M satisfies dcb(E,RC n p ) ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ for some constant cp depending only on p, where 1 p + 1 p = 1 and RC p = [Rn∩ Cn, Rn +Cn] 1 p . Moreover, there is a projection P : Lp(M) → Lp(M) onto E with ‖P‖cb ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ . We fo...

متن کامل

EMBEDDINGS OF NON - COMMUTATIVE Lp - SPACES INTO NON - COMMUTATIVE L 1 - SPACES , 1 < p < 2 Marius Junge

It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomorphic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative Lp(N, τ)-spaces defined by a finite trace on a finite von Neumann algebra. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting. Introduction and Notation The theory of p-stab...

متن کامل

Variants of a-T-menability for actions on non-commutative Lp-spaces

We investigate various characterizations of the Haagerup property (H) for a second countable locally compact group G, in terms of orthogonal representations of G on Lp(M), the non-commutative Lp-space associated with the von Neumann algebra M. For a semi-finite von Neumann algebra M, we introduce a variant of property (H), namely property HLp(M), defined in terms of orthogonal representations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2003

ISSN: 0022-1236

DOI: 10.1016/s0022-1236(03)00045-4